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Abstract 

This paper delves into the evolution and intricacies of financial mathematics, tracing its roots 

from Bachelier's groundbreaking work in 1900 to the comprehensive financial market models 

of the 1990s. While the general market model postulated by Delbaen in 1998 serves 

as an inclusive framework, certain gaps and limitations persist, particularly concerning non-

discounted setups, potentially negative price processes, and dividend considerations. The aim 

of the contribution is to bridge these gaps by presenting a general market model that 

encompasses dividend payments in real-world contexts, transitioning subsequently 

to a discounted setup. We define such a market and find the necessary technical requirements. 
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Introduction 

The theory of modern financial mathematics in its present form has its origin in the dissertation 

one finds the first mathematical description of Brownian motion as a stochastic process 

(although not under that name). Bachelier's goal was to derive theoretical values for various 

types of options on certain goods by modelling prices of goods using a Brownian motion 

and comparing these prices with actual market prices. He proposed as option prices 

the expected value of the payment arising from the option. The crucial shortcoming 

in Bachelier's modelling was that the prices of goods could become negative. 

Bachelier's work was forgotten for a long time. It was only after the development 

of the stochastic integral and the introduction of geometric Brownian motion as a pricing model 
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In 1973, Fischer Black and Myron Scholes made the decisive breakthrough (Scholes 

et al., 1973) by developing the famous Black-Scholes equation and formula. 

Since then, financial mathematics has become a huge field of research, and numerous 

models have been proposed and analysed. The progress and advancement of stochastic analysis 

and stochastic integral, mainly by Doob (1953), Meyer (1962), Meyer (1963), Kunita 

et al. ans-Dade 

et al. (1970), Meyer (2002), Jacod (1979), Chou et al. (1980), and Jacod (1980) also opened 

up numerous new possibilities for financial mathematics. In particular, the modern approach 

of option pricing according to the duplication principle has established itself as a standard. This 

approach is a natural application of the martingale theory and representation theorem. Here 

Harrison et al. (1981) can be considered as a cornerstone. 

However, at that time, while many different models had been examined and studied, there 

was no overarching theory that combined all these models to lay the groundwork for modelling 

financial markets. A significant breakthrough in the general theory of financial mathematics 

was achieved in the 1990s by Delbaen et al. (1994) and Delbaen et al. (1998) by presenting 

a very general financial market model that included almost all of the known models and proving 

the connection between arbitrage and mathematical conditions on the existence of specific 

probability measures. Since then, most publications have referred to this model. The financial 

market, as discussed in Delbaen et al. (1998), can be seen as the general market, which 

comprises almost all models of frictionless markets that are used in practice. Therefore, 

the results are universal, and the general set-up of the market is, without a doubt, the most 

important market model in Mathematical Finance. However, there are some gaps 

and shortcomings in the literature. 

 The model in Delbaen et al. (1998) assumes a discounted set up (sometimes also 

referred as normalized set up). However, most models used in practice are described 

in non-discounted terms in order to be able to verify its assumption with real-world 

observations. The question how and under which assumptions non-discounted set 

ups can be transformed to discounted set-ups has not been described in general 

terms, but only for specific models. 

 The price processes in Delbaen et al. (1998) are potentially negative. The price 

processes of any most results of the general theory, such as the Second Fundamental 
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Theorem of Asset Prices, the Third Fundamental Theorem of Asset Prices, 

or the theory of bubbles are assumed to be bounded from below. A generalisation 

to the original set-up has not taken place yet. 

 The model as it is presented in Delbaen et al. (1998) does not consider dividends 

or additional cash-flows, and therefore excludes some essential models, such 

as models for pricing and setting of futures. In many cases, it is possible to transform 

dividend-paying models to non-dividend models (see for example Jarrow, 2021, 

Section 2.3). Therefore, an extension of the initial model to include dividends 

is desirable. 

 Some basic properties of market models are often assumed to be true without 

validating them for this very general model. This applies to the notion of admissible 

 so on. In particular, since 

the general market model allows for negative prices some of the available properties 

get more complicated or even completely devalidated. 

The aim of this contribution is to close the gaps mentioned above and to define a general 

market model that considers dividend payments in a real-world set-up. Then introduce 

the -up. The special conditions 

and technical requirements are investigated and motivated. Furthermore, the literature on these 

topics and some examples are reviewed. 

1 The General Semimartingale Model with Dividends  

In this section, we are going to define a very general market model with dividends. 

Our discussion primarily centers on time-continuous models. Although discrete models can 

be viewed as a subset of time-continuous models, they are typically easier to navigate 

mathematically. Nevertheless, time-continuous models are arguably more popular in financial 

mathematics, especially within portfolio theory. A key rationale for not exclusively relying 

on discrete models is that optimization problems in such a domain ideally have unique 

solutions. However, this uniqueness is often absent in discrete-time strategies, leading 

practitioners to settle for an approximate series of trading strategies. 

For a given -valued semimartingale , the space  is defined as the set of possible 

integrands for  for the general vector-valued stochastic integrals for a semimartingale 

integrator. Furthermore for a semimartingale  and  
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denotes the stochastic integral at time . 

Consider a financial market that comprises  tradable securities. The price processes 

of these securities are depicted by the -dimensional process  . 

These processes also have associated cumulative dividend processes, termed 

, which are adapted to the filtration   

It is assumed that the market is both frictionless and competitive. A market that is referred 

to as "frictionless" is characterized by the absence of transaction costs, differential taxes, 

and trading constraints, including short sale restrictions, borrowing limits, and margin 

requirements. Furthermore, within this particular market, it is worth noting that shares possess 

the characteristic of being infinitely divisible. The term "competitive" in reference to the market 

denotes a situation where traders function as price takers. In this context, individuals have 

the ability to engage in trading activities involving any desired quantity of shares without 

exerting any influence on the market price. This ensures that there is no presence of liquidity 

risk. 

Furthermore, the following mathematical assumptions are being made: 

  is a filtered probability space with probability measure . 

 The processes  and  are semimartingales for all  

 The filtration  satisfies the usual conditions and the -algebra  is trivial, that is, 

 implies  or  

Remark 1.1. Markets with dividends can often be transformed into dividend-free ones. 

However, these transformations usually need additional assumptions to hold that are not 

universally applicable. For instance, Jarrow, 2021 presumes all cash flows to be positive 

and  

The process  denotes the cumulative dividend payments of the -th share up until the time 

. We don't mandate monotonicity; hence, distributions might even be negative (additional 

distribution). Dividend processes that potentially have negative increments are crucial 

                                                           
1 There are several definitions for semimartingales in the literature, see for example Cohen et al. (2015) vs. Protter 

(2010). However, they are equivalent, as it is shown in Section 3.9 in Protter (2010). 
2 The usual conditions are, for example, defined in Cohen et al. (2015) p. 139 or Protter (2010) p. 3 as usual 

hypotheses. 
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for the study of certain products such as futures. Such dividend payments can be viewed as cash 

flows, making the limitation to solely positive cash flows appear overly stringent. 

Generally, dividend processes are categorized into two types: 

The first type posits continuous paths for the dividend processes, which, while 

mathematically convenient, isn't particularly realistic. The second assumes discrete dividend 

payments, with the dividend process  being a pure jump process3 . This is more 

aligned with reality, though not straightforward mathematically. 

Mathematically speaking, it's prudent to presume price processes as semimartingales 

because the most widely accepted definition of the general stochastic integral only incorporates 

semimartingales as integrators. This assumption also finds economic justification; for instance, 

if the price process is locally bounded, adapted, and the market adheres to the 'No Free Lunch 

With Vanishing Risk' principle (a variant of 'No Arbitrage'), then the price process 

is a semimartingale, as demonstrated in Theorem 8 of Ansel et al. (1992) and on pages 504-507 

of Delbaen et al. (1994). Another economic rationale is provided in Kardaras et al. (2011), 

where Constantinos Kardaras and Eckhard Platen show that in markets where only simple 

predictable trading strategies are permitted, where short-selling is disallowed and no-arbitrage 

principles hold, price processes are always semimartingales4. 

Requiring all price processes to be semimartingales excludes fractional Brownian motions 

with a Hurst parameter . As of now, a consistent no-arbitrage theory for these processes 

in a frictionless, continuously trading market is non-existent. Yet, in markets with transaction 

costs, such arbitrage possibilities typically vanish. In these settings fractional Brownian motions 

are considered realistic and reasonable, for example, in Guasoni (2006). 

1.1 Self-financing Trading Strategies  

Definition 1.2. (a) -dimensional process  is called a trading 

strategy. 

(b) The wealth process of the investor is defined as 

 

where  represents the number of the -th security that an investor holds in his portfolio at . 

                                                           
3 For the pure jump process definition, refer to Klebaner (2005, Chapter 9). 
4 However, the No Arbitrage definition in this paper deviates from NFLVR. 
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Definition 1.3. A trading strategy is called self-financing 

if the wealth process  satisfies 

   

Note the equation deals with higher dimensional processes and hence multi-dimensional 

integration. 

Remark 1.5. The variable  represents the quantity of securities  held by the agent within 

the portfolio, specifically within the time frame of  - to  (referred to as the investment in  ). 

The jumps referred to as  and  should be considered as synchronous. The term  can 

be conceptualised as the ex-dividend price, which refers to the price of a security after 

the dividend payment has been made. 

The dividend payout for the agent at time  is . This is now invested in the  

 securities immediately after . So, as before, there is no permanent cash holding. 

Therefore, only  and not  appears in 1. 

1  

In practice, comparing two assets at different times based on their nominal size is unusual 

and makes no sense. Therefore, a benchmark should be introduced that enables us to produce 

 

Definition 1.6. A predictable semimartingale which satisfies

    

Remark 1.7. The predictability is necessary to ensure that  can be used as integrand. This 

is important to define the discounted dividend process and to map the self-financing condition 

of price processes to the self-financing condition of their discounted counterparts. 

independently of the time. The discounted processes are denoted by  or , which means: 

   

For further analysis, one needs the following result. 

Lemma 1.8. Let   is bounded on each compact interval and 

in particular locally bounded. 
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, with probability 1, 

the infimum of  over the interval  is strictly positive. This implies that for any compact 

interval , there exists a  such that  for all  almost surely. 

Considering the reciprocal function , since  for all  almost surely, we 

deduce for all  almost surely. Thus, the function  is bounded by  

on the compact interval  almost surely. Since this argument holds for any compact interval 

, we conclude that  is locally bounded.  

The literature does not pr

like Bingham et al. (2013), Elliott et al. (2005), or Pascucci (2011), it is only required that 

 should be a positive semimartingale. This notion also extends to Geman et al. (1995), 

reg

raire's left limit must also 

be greater than 0. Even stricter conditions are demanded in specific settings such as Ebenfeld 

in (Klein et al., 2016). Our interpretation aligns with the one presented in Qin et al. (2017). 

Recent publications have started to describe financial market models without invoking 

the et assumptions, as described 

in (Herdegen et al., 2016), are necessary to maintain the feasibility of discounting price 

processes. 

It is essential to introduce both a discounted dividend process, , and a discounted wealth 

process, . The process  denotes cumulative dividends up to a given time. However, each 

, at its payment time - not by its value at . 

This approach ensures that any change in the discounted dividend process, , occurs only when 

the dividend process, , changes. In scenarios like , these properties would not hold since 

a  could lead to a change in . Therefore, the following 

definition naturally arises. 

Definition 1.9. By  the discounted dividend processes 

is denoted. Furthermore 
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denotes the discounted wealth process. 

Remark 1.10. By Protter (2010) Theorem IV.18, one has . 

While it is commonly assumed that  is a pure jump process, we want to avoid making this 

assumption here and rather stay as general as possible. 

However, if we operate under the assumption that the dividend process is a pure jump 

process (meaning  is valid), then, by Theorem IV.17 and Theorem IV.18 from Protter 

(2010), we arrive at 

 

In this scenario,  also becomes a pure jump process, only changing when  does. 

The following theorem is immensely beneficial, offering the foundational technical 

knowledge to explore properties in discounted settings using the conventional tools 

of stochastic analysis. 

Theorem 1.11. The processes  are semimartingales and  is 

a  are semimartingales and  is 

a  is self-financing, then the discounted wealth process  is 

a semimartingale. 

Proof.  Let   semimartingales. We define 

 

Now  is a localizing sequence and we examine the processes 

  
   

Let  be a convex function, which satisfies  for . By Remark 3.2, we obtain 

that  is a semimartingale and since  holds,  is also a semimartingale. Thus  

is prelocally a semimartingale and hence, by Theorem 3.3, a semimartingale. Since  

is a  

   

and hence 
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Thus   is by Theorem 3.1 also a semimartingale. 

 Let  be semimartingales and  

obtain that  is a semimartingale and by arguing as above, it follows that  

Hence   

 

holds, we obtain that  are also semimartingales. 

Now we assume  to be self-financing. Then we have , which 

is a semimartingale by Theorem 3.1.  

The subsequent theorem asserts that the self-financing property stays valid regardless 

of whether the associated wealth process is viewed in nominal or discounted terms. 

Theorem 1.12. Let  be a trading strategy,  be the associated wealth 

process and   for all . Then  is self-financing 

if and only if 

 

where  

Proof. We show the one-dimensional case. The multi-dimensional case follows from 

the linearity of the integral and the fact that any strategy can be approximated by component-

wise integrable strategy. 

By the definition of  and , it is easy to see that   . 

We first assume 
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By Theorem 1.11,  is a semimartingale and with Theorem 3.4, we obtain with 

a slight abuse of notation 

 

Hence  is self-financing. The converse follows analogously with  and . 

Since each trading strategy can be approximated with component-wise integrable trading 

strategy, the general result follows by taking limits.  

2 Conclusion 

This paper explores the evolution of financial mathematics, starting with Bachelier's early work 

in 1900 and ending with the comprehensive market models of the 1990s. Despite its breadth, 

Delbaen's 1998 model had limitations, such as not accounting for non-discounted settings, 

the possibility of negative price paths, and importantly, dividends. 

To address these issues, we developed a general model including dividends. We carefully 

defined each component. When we moved from a standard to a discounted model, we made 

sure to close literature gaps and found that traditional features often changed or became 

irrelevant, particularly in dividend models. However, we pinpointed necessary technical 

requirements to keep these features consistent. Key among these are the predictability and lower 

bound limits of the numeraire, as well as the uncorrelatedness of the continuous part 

of dividends and numeraire. By combining a thorough review of relevant literature with our 

innovative insights, this paper manages to fill existing gaps and strengthen the foundations 

of financial mathematics. 
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Appendix:

Some referenced results  

A proof for the following result can be found in Protter, 2010, Corollary 2 of Theorem 2.22. 

Theorem 3.1 (Partial integration). Let  be two semimartingales. Then  

is a semimartingale and 

 

Remark 3.2. The space of semimartingales posseses some remarkable stability properties. 

For example, for a convex function  and a semiartingale  is also 

semimartingale. This is a consequence of the Tanaka-Meyer-

et al. (2015) Theorem 14.3.11 or Protter (2010) Theorem IV.70). Theorem IV.66 from Protter 

(2010) also provides a simplified proof of the abovementioned fact. 

The next result is taken from Protter, 2010, Chapter II Section 2 

Theorem 3.3. (a) Local semimartingales and processes that are prelocally semimartingales 

are semimartingales. 

(b) An -valued stochastic process  is a d-dimensional semimartingale if and only if all 

components are one-dimensional semimartingales. 

(c) The set of all semimartingales form a vector space. 

(d) Let  be a probability measure that is absolutely continuous with respect to . Then 

every -semimartingale is also a -semimartingale. 

The following result can be found in Protter, 2010, Chapter II Section 6 

Theorem 3.4. Let . The process  is an  process, a semimartingale and has 

the following properties. 

(a)  and . 

(b) Let  be a stopping time. Then we have 

 

(c) The quadratic variation  is a positive, increasing process. 

(d) If  is an  process, we have 
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(e) For  and , we have 

 

 


