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Abstract 

This paper deals with the Heston model's utility indifference pricing method via the exponential 

utility function. We illustrate the main properties, review the existing literature and elaborate 

on the idea behind the pricing method and control. The main results of this paper are a pricing 

equation for the model, an equation for the optimal hedging strategy in the model, an illustration 

of why short positions must not appear in practice when applying the utility indifference 

approach, which is a contradiction to the observed real-world trading and a simulation 

of the price process, calculation of the corresponding derivative prices and a comparison 

of the different hedging strategies.

The simulation together with the result about the absence of short positions hints that utility 

indifference pricing should be treated with caution when applied in practice in the real world.
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Introduction 

The Black-Scholes model has become the standard model for valuing derivatives in industry 

and academia. The distribution of neither the underlying price process of the stock nor the prices 

for underlying match the empirical distribution of assets traded in the real world (Rubinstein, 

1994; Duan, 1999). One particular drawback of the Black-Scholes model seems to be 

the assumption of stationary volatility Black; Scholes, 1973 and data shows that the volatility 

is random (Blattberg et al., 1974, Scott, 1987) and correlated to the underlying price process 

(Rosenberg, 1972, Black, 1975, Geske, 1979, Beckers, 1980).

In order to remedy these inaccuracies, the Black-Scholes model was generalised to allow 

stochastic volatility (Scott, 1987; Wiggins, 1987; Hull et al., 1987), and empirical studies show 



that stochastic volatility improves the performance of the models (Amin et al., 1997; 

Das et al., 1999; Buraschi et al., 2001).

However, introducing a second source of risk makes pricing more complicated as markets 

usually become incomplete and hence it is impossible to hedge a claim perfectly. Applying 

similar methods as Black, Scholes, and Merton did makes it possible to derive a similar PDE. 

Nevertheless, neither its solution nor any equivalent local martingale in this market is unique, 

and further assumptions or preferences must be made to obtain a unique price. Several 

suggestions were made, for example, minimising the risk of the corresponding hedging strategy, 

pricing via a super-hedging strategy and many more. (A general overview of these methods can 

be found in Pham, 2000. Its application to stochastic volatility models, for example in Laurent 

et al., 1999; Biagini et al., 2000; Heath et al., 2001; Pham, 2001; Grandits et al., 2002).

Another approach is to maximise an investor's expected utility by assuming an underlying 

utility function based on the investor's risk preference, which was introduced in Hodges, 1989 

and has become quite popular and well studied, see for example M. H. Davis et al., 1993; Barles 

et al., 1998; Constantinides et al., 1999; Rouge et al., 2000; Constantinides et al., 2001; 

Becherer, 2001; Delbaen et al., 2002; Davis, 2006; Monoyios, 2009; Monoyios, 2010; Danilova 

et al., 2010).

A pricing equation for stochastic volatility models was first calculated by Sircar et al., 

2004. Since then, many papers dealt with this problem or the corresponding problem 

of portfolio optimisation in this model (Kraft, 2005; Benth et al., 2005; Fouque et al., 2015; 

Boguslavskaya et al., 2016), and the optimisation problem of slightly generalised models such 

as stochastic interest rate, additional trading of zero bonds, and continuous consumptions has 

been studied (Li et al., 2009; Noh et al., 2011; Chang et al., 2013; W.-J. Liu et al., 2015; Kim 

et al., 2015). As the stochastic volatility models are complex and no simple solution can be 

established for the pricing and hedging of these models, many studies in this area deal more 

with numerical aspects than analytical and formal investigations of the model (see, for example, 

Carr et al., 1999; Floc'h et al., 2018).

The aim of the contribution is deriving a pricing equation for the Heston model, similar 

to the Black-Scholes equation, determining the optimal control, and calculating the residual risk 

process. Furthermore, potential shortcomings of the model when applied in practice should be 

investigated. We will show that, an approximated strategy with a positive probability 

of containing short positions is not the optimal time discrete strategy and hence not the optimal 

strategy that can be applied in practice. Hence, we put the model to the test, model a stock price 

process and apply the calculated optimal strategy and the optimal utility indifferent hedging 



strategy. We compare the results concerning options prices and portfolio wealth with the results 

we get when applying a delta hedge strategy with respect to the prices from the Black-Scholes 

model as well as the prices from the closed form solution of the Heston model (Heston, 1993)

1 The model 

We assume a market with a stock and a riskless bond . The price of the stock is modelled 

as a diffusion process satisfying

with and . The processes and are standard Brownian

motions with defined on a filtered probability space

where is the -algebra generated by and .

The Bond can be traded, yielding a constant interest rate . For simplicity we assume

. Furthermore, let be the payoff of a European-style claim.

Consider an agent investing in the stock and the bank account with a self-financing strategy 

, where denotes the proportion of wealth the investor invests in the risky asset. 

That means, at any time , the investor holds stocks, and therefore, by the self-financing 

condition, the wealth process is given by 

The Heston Model has some advantages over the Black-Scholes model, such 

as nonlognormal probability distribution (for example, fat tails), mean reverting volatility, 

leverage effect and many more, but also some disadvantages. Also, the fact that the medium 

and long-term maturity fits the implied volatility surface of option prices is a huge advantage. 

The parameters are, for example, arduous to estimate, and these estimations are crucial since 

the model reacts extremely sensitive to minor variations in the parameters.

Due to the two sources of risk, we cannot perfectly hedge the claim, so it is impossible 

to determine the price only by no-arbitrage arguments. We formalise this observation:

Proposition 1 The market in the Heston model is incomplete.

Note that the market becomes complete if it is possible to trade an asset with the price 

process . In this case, an equivalent local martingale measure is, by definition, an equivalent 

probability measure only if and are local martingales with respect to , which would 

not be the case for the probability measures we just constructed in the proof.

Since the no-arbitrage pricing method, as it was applied in the Black-Scholes setting, 

cannot be applied to incomplete markets, other methods to determine the price of any claim has 



to be applied in the Heston model. This issue has been studied extensively, and numerous 

approaches exist.

One possibility is introducing another derivative in the market to complete the market 

and enable no-arbitrage pricing. For instance, this is the technique described in the articles 

by Zhu et al., 1998; Romano et al., 1997; Hobson et al., 1998; Davis, 2003. Other papers give 

a justification requirement for a specific selection of a martingale pricing measure. 

In the context of continuous-time stochastic volatility models, there are two prevalent criteria 

for selecting martingale pricing measures: the variance-optimal martingale measures 

and the minimal entropy martingale measures. There is a relationship between the variance-

optimal martingale measures and the quadratic utility functions. Laurent et al., 1999; Biagini 

et al., 2000; Heath et al., 2001, among others, conducted substantial research on their use. 

The minimal entropy martingale measure may be related to the option valuation issue under 

an exponential utility function with constant absolute risk aversion; for instance, see Delbaen 

et al., 2002; Rhe . Henderson et al., 2008 examined utility-

based indifference pricing of contingent claims using stochastic volatility models. Indifference 

pricing derives from Hodges, 1989 and establishes a seller's/buyer's price such that 

the seller/buyer is indifferent to whether the claim is sold/bought. An excellent overview 

of the different pricing methods can be found in Henderson et al., 2008.

This paper will apply the utility indifference pricing method to the Heston model.

2 Pricing equation and hedging strategy 

The investor seeks to find an optimal strategy to maximise the expected terminal utility. 

Therefore let be a utility function reflecting the personal risk attitude of the investor. 

A popular choice as utility function is the exponential utility function 

The advantages of this function are not only that it allows for negative wealth but also 

that the corresponding optimal control will be wealth-independent (see, for example, Grasselli 

et al., 2004). Wealth independence is crucial for obtaining a 'universal' (as opposed to individual 

pricing) equation, provided all investors in the market exhibit the same risk preference, which 

is an advantage over, for example, the power utility function. Note that in the literature, 

the exponential utility function is very often given as , which 

yields the same maximising strategies.



We compare the utility of two sets of admissible strategies. The first strategy does not 

involve the claim at all, and the investor's goal is only to maximise the utility by maximising 

the expected terminal utility when trading only in the stock and the bank account. Let be 

the set of admissible strategies, which means self-financing strategies with potentially 

additional requirements, such as the uniform boundedness of the wealth process from below.

We define

with the value function

We compare these strategies with the strategies involving buying one unit of the claim. 

In this case, we define

and so the value function is defined by

The functions and are solutions of the Hamilton-Jacobi-Bellman equation, which

has been studied extensively. A comprehensive treatment can, for example, be found 

in the 2010.

Note that and also depend on , even though the payoff at time does not. The reason 

for doing so is that we do not want to consider the more complex case of partial information: 

Since and are not perfectly correlated, the -algebra is larger than the -algebra 

generated by all sets for . And because furthermore and are not

independent, we have 

Another advantage of this approach is that it can easily be generalised to the case of claims 

that depend on such as volatility derivatives.

Now we can define the indifference buy price. Definition 2 The indifference-buy-price 

at time is defined such that an agent with an initial random 

endowment is indifferent between doing nothing and buying the claim for that price. 

That means, for , we have .



In a complete market, where a geometric Brownian motion models the stock price, 

the utility indifference price coincides with the Black-Scholes price (see for example 

M. H. Davis et al., 1993).

The main result of this paper is the following.

Theorem 3 The utility indifference price process for the European claim 

is determined by the PDE

with terminal condition , where is a function which satisfies

and . The optimal hedging strategy is given by

For an investor holding one claim and trading with the optimal strategy, the residual risk 

process is given by

The proof for this statement is given in section 6.1.

If the market is complete, which means , the utility-indifferenceprice 

coincides with the no-arbitrage price. For you can see that 

solves the pricing equation for defined by by . - For , the optimal 

hedging strategy becomes just a plain delta hedge. If one defines a new probability measure 

the way it was done in definition in Sircar et al., 2004, let tend to zero and apply Feynman-

Kac, we obtain . The martingale measure is called the martin

entropy martingale measure. Its importance for pricing theory is well studied. We can derive 

a connection between certain equivalent local martingale measures and PDEs by comparing our 



pricing PDE with the one in Sircar et al., 2004. The equations are quite similar, but Sircar 

and Zariphopoulou expressed the function in terms of an equivalent local martingale measure.

3 Impossibility of short positions in the utility in- difference 

approach 

As always, when dealing with trading strategies in continuous time, the question arises 

of whether they are applicable in practice and how they perform when simulated. In the case 

of an exponential utility function, this is particularly interesting as the utility function becomes 

very steep for large negative numbers. In particular, the marginal utility drops more than 

the probability density function, leading to the exclusion of short positions when applying 

the utility indifference approach in practice. This was already hinted by Gerer et al., 2016. 

We give here detailed proof in a slightly different setting. As short positions are applied 

in practice, one can conclude that real-world prices do not arise via the utility indifference 

method. As continuous trading is impossible in simulation or practice, we must restrict our 

trading strategies to simple processes, which are often used when defining the stochastic 

integral.

Definition 4 A process is said to be simple if has a representation

where is a finite sequence of real numbers, with

a.s., . The collection of simple processes is denoted with .

In continuous trading, a strategy is called admissible when its corresponding value process 

is bounded from below. As this excludes short positions for simple processes, we will amend 

this definition slightly. Definition 5 We call a trading strategy with step-times

simulation admissible if there exists a such that for all with

for all with . This means a strategy is admissible if investors stop trading 

entirely once their wealth process drops beneath a specific value.

Theorem 6 Assume a trader wants to maximise the terminal wealth by investing in shares 

and holding one claim with a bounded payoff . Then the optimal simulation admissible 

strategy does not involve any short positions in the stock.



4 Simulation 

To test the utility indifference pricing equation, we simulated a stock price process via 

the Euler-Maruyama method (see, for example, Kloeden et al., 2013).

We use the following set of parameters for our simulation:

,

as these are parameters fitting to the S&P 500 according to Hirsa [36].1

As we are particularly interested in claims bounded from above and whose hedging strategy 

usually consists of holding short positions of the stock, we choose a bull spread containing 

a long position of a call with strike 30 and a short position of a call with strike 40.

The time interval is divided into 200 equally sized time steps, and we consider five 

portfolios:

d) Contains a claim priced by the Black-Scholes formula and hedged via simple

delta hedging.

e) Contains a claim priced by the explicit Heston formula (Heston [35]) and hedged

via simple delta hedging.

f) Contains a claim priced by our utility indifference pricing equation and hedged

via simple delta hedging.

g) Contains a claim priced by our utility indifference pricing equation and hedged

via the optimal hedging control.

h) Contains a claim priced by our utility indifference pricing equation and hedged

via the optimal control for a portfolio consisting of a claim and shares.

Each portfolio starts with zero wealth, and all strategies are self-financing. We used 

the same value for to price the claim via the Black-Scholes formula. However, 

for the volatility, we used to adapt the volatility of a stock price driven 

by a geometric Brownian motion to our stock price process. We did 500 simulations in total. 

The main results are shown in the table below. The values were calculated by the terminal 

values of the simulations, and stands for the 10 th percentile.

1 It should be noted that several empirical studies of the Heston model exist, and the parameter estimations differ. 
For example, Ellersgaard et al., 2018 assume a much higher mean-reversion speed. The values estimated by .
Liu et al., 2003 are similar to ours.



Table no. 1: Terminal values of 500 simulations

Wealth 
Mean

Wealth 
Variance

Wealth 
Wealth 
Median

Wealth 

Black Scholes
Heston Closed 
Form
Heston Utility 
Delta
Heston Hedging 
Control
Heston Optimal

Source: Results from the simulation performed in MATLAB and R

It is not surprising that the Heston Optimal strategy performs best. It is no hedging strategy; 

its goal is to maximise wealth instead of minimising risk. During the simulations, no short 

position was held in the stock (even though it got close to zero quite often). Comparing these 

strategies with a different set of parameters might be interesting. Here the drift of the stock 

is significantly positive, and the interest rate was set to zero. Hence it seems evident that 

a strategy comprising going short in the stock and long in the stock performs quite well. 

The data also shows that the variance in the optimal strategy exhibits a significant variance, 

and the tenth percentile is significantly lower than the one for three of the four hedging 

strategies. A somewhat surprising result is the bad performance of a delta hedge in the Heston 

model, where the price was calculated via the closed-form equation. Moreover, the performance 

seems even worse when considering longer maturities. The delta-hedged utility indifference 

claim performs worse on average than the optimal hedge. However, it is the strategy 

with the most negligible risk apart from the delta-hedged Black-Scholes model. Regarding 

the calculated option prices, it seems that the Closed Form Heston Model is not as sensitive 

regarding the maturity as the other two pricing models. There are no essential differences 

between the Black-Scholes price and the utility indifference price for our set of parameters.

We conclude that the utility indifference pricing and hedging strategies are valid methods. 

Nevertheless, further tests are necessary to see how these perform for a different set 

of parameters and to see whether the shortcomings of the Black-Scholes model can be 

overcome.

Conclusion 

This paper examined the popular Heston model for pricing European-style derivatives via 

the utility indifference method. While it is possible to derive pricing equations 



and mathematically correct hedging strategies, we found that these strategies should be applied 

carefully in practice.

One reason is that the formal setting of utility indifference pricing in the Heston model 

does not allow for short positions in any optimal portfolio. Since short positions frequently 

happen in practice, this indicates that utility indifference pricing in the Heston model does not 

explain trading in the real world. Another reason results from the simulation we did 

in the second part of this paper. This simulation shows that the Heston model's optimal hedging 

strategy for utility indifference pricing does not perform well when applied in practice. 

The reasons for this can be manifold; most likely, the strategy and model are susceptible 

to parameter changes and approximations.

However, our simulation only used one set of parameters. More simulations and research 

should be performed to support or challenge our findings.
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A. Appendix

Proofs of the results

In this section, the proofs for the results, discussed in the main part, are provided.

Proposition 7 The market in the Heston model is incomplete.

In the following proof, for stochastic processes , we write for the stochastic 

integral .

Proof: We define . Then we have . Now we define a new

probability measure with by its Radon-Nikodym derivative

By Girsanov's Theorem, the process

is a Brownian Motion with respect to and hence

is a local Martingale for any . So there are infinite many equivalent local martingale 

measures for , and with the Second Fundamental Theorem of Asset Pricing, which follows 

if via localisation of the theorems in Harrison et al., 1981; Harrison et al., 1983, we conclude 

that the market is incomplete.

The next part of this section provides the proofs for the important Theorem 3. We will split 

this theorem into smaller parts. 

In order to derive a formula for the indifference price we examine and .

Theorem 7 We have

where is a function that satisfies

(3)

and . The optimal trading strategy is given by



To keep things short and palatable, we will neither deal with verification of our result nor 

with technical assumptions such as smoothness or Lipschitz conditions.

The following proof can, for example, be verified with Theorem 11.2.1 from [64], which 

also states the mild technical assumptions under which a solution of the partial differential 

equation (4) provides the optimal control. Furthermore, to improve readability, we will omit 

the indexes in the following calculations, and we write for , etcetera.

Proof: Throughout this proof, we write for 

By the Davis-Varaiya martingale principle of optimal control (see for example Theorem 

in Rogers [55]), the process is a martingale for an optimal process . So,

we conclude that the drift must be zero for the optimal control . Hence, we conclude

(4)

In order to find the optimal control, we differentiate with respect to and obtain

Hence, we have

(5)

Putting this into equation (4), we get

(6)



This is a non-linear PDE, and there is no straightforward way to solve it. In Sircar et al., 

2004, T. Zariphopoulou introduced a certain power transformation, a so-called 'distortion 

power' and obtained a linear PDE. We try a different ansatz here, which goes back to Fleming 

et al., 2006 and was applied in similar settings for example in Pham, 2002 and Benth et al., 

2005. We set

(7)

Now we get for:

So, we obtain for 

with

Putting the partial derivatives into (5) yields the optimal strategy. 

Now we have a closer look at .

Theorem 8 We have

where is determined by the PDE

(8)

with and is the function from Theorem 7. The optimal trading 

strategy is given by

Proof: We write again for 



(9)

with being a local martingale.

So, for the optimal , we have

and we obtain

(10)

By plugging this into equation (9) we get

(11)

We make a similar ansatz as before and assume

(12)

where is the function from (3) and is a function which is, so far, only defined 

by the PDE. We calculate the partial derivatives for:

and by filling them into the partial derivatives in equation (11), we obtain after some 

reordering



Note that the term is equal to zero according to Theorem 7. So, since , we obtain

which proves equation (8) with the terminal value .

In order to derive the formula for the optimal control, we plug the partial derivatives of 

into equation , and thus we get

Hence the result follows. 

Corollary 9 We have , and hence is determined by the PDE

with terminal condition , and the optimal hedging strategy is given by

Proof: The price is determined by the equation

Using (7) and (12), we obtain



and we get the pricing equation.

The hedging strategy follows from .

Theorem 10 For an investor holding one claim and trading with the optimal strategy, 

the residual risk process is given by

Proof: -Formula, we obtain

It is also possible to use the pricing equation for further rearrangements. However, this 

does not simplify the equation any further.

Theorem 12 Assume a trader wants to maximise the terminal wealth by investing in shares 

and holding one claim with a bounded payoff . Then the optimal simulation admissible 

strategy does not involve any short positions in the stock.

In the following proof, for stochastic processes , we write again 

for the stochastic integral .

Proof: We show that no simulated admissible strategy with 

is an optimal control.



Let be a real number with and we define the random variable

as the unique number (possible infinity) for that we have .

Furthermore let be a real number with where is the boundary from definition 5 

and . We have , which

2 which gives an expression 

for the asymptotic distribution of the returns in the Heston model.

First, we note that we have for all . Assume , then we

have of all 

Hence, we have

Since is continuous, is also continuous and there exists a with ,

and thus we have for all because is admissible. This contradicts the definition 

of and hence we conclude .

Now we see that we have for all for all , which is a direct

consequence of being admissible:

Hence, we derive for all :

Since the function is decreasing,

we have

Now we can complete the proof. The definition of a random variable is defined as 

with the condition that at least one of these two expectations 

is finite. Thus, by showing , we can conclude

, which means that is no optimal control.



We calculate

By letting tend to infinity and interchanging integral and limit (which we justify 

by dominated convergence), we get the desired result. 


