Information Acquisition and Excessive Risk-Taking: Impact of Subdued Market Risk and Low Interest Rates

Volha Audzei

CNB and CERGE-EI

November 27, 2015
Motivation

- Current debate among policy makers:
 Stein (2012), Bernanke (2012), Financial times (April 17, 2013)
- Empirical support:
 - potential causes of the crisis?
Paper contribution

- Endogenous information acquisition:
Paper contribution

- Endogenous information acquisition:
 - a driving force for overaccumulation of risk?
Paper contribution

- Endogenous information acquisition:
 - a driving force for overaccumulation of risk?
 - agents can invest in the reduction of their forecast variance
Paper contribution

- **Endogenous information acquisition:**
 - a driving force for overaccumulation of risk?
 - agents can invest in the reduction of their forecast variance

- **Endogenous information budget:**
Paper contribution

- Endogenous information acquisition:
 - a driving force for overaccumulation of risk?
 - agents can invest in the reduction of their forecast variance

- Endogenous information budget:
 - unlike the capacity constraint common in the literature
Paper contribution

- **Endogenous information acquisition:**
 - a driving force for overaccumulation of risk?
 - agents can invest in the reduction of their forecast variance

- **Endogenous information budget:**
 - unlike the capacity constraint common in the literature

- **Two learning functions considered:**
Endogenous information acquisition:
- a driving force for overaccumulation of risk?
- agents can invest in the reduction of their forecast variance

Endogenous information budget:
- unlike the capacity constraint common in the literature

Two learning functions considered:
- a linear
Paper contribution

- Endogenous information acquisition:
 - a driving force for overaccumulation of risk?
 - agents can invest in the reduction of their forecast variance

- Endogenous information budget:
 - unlike the capacity constraint common in the literature

- Two learning functions considered:
 - a linear
 - an entropy based
Main results

- With low interest rates there is more investment into risky asset
Main results

- With low interest rates there is more investment into risky asset
 - but there is less investment into information acquisition
Main results

- With low interest rates there is more investment into risky asset
 - but there is less investment into information acquisition
 - unlike in the models with constraints on capacity
Main results

- With low interest rates there is more investment into risky asset
 - but there is less investment into information acquisition
 - unlike in the models with constraints on capacity
- In low volatility environment there is more investment into risky asset
Main results

- With low interest rates there is more investment into risky asset
 - but there is less investment into information acquisition
 - unlike in the models with constraints on capacity
- In low volatility environment there is more investment into risky asset
 - and less investment into information acquisition
Main results

- With low interest rates there is more investment into risky asset
 - but there is less investment into information acquisition
 - unlike in the models with constraints on capacity

- In low volatility environment there is more investment into risky asset
 - and less investment into information acquisition
 - as a result larger portfolio risk than in high volatility environment
Set Up

- 1 sector (banks)
Set Up

- 1 sector (banks)
- 2 types of assets: risky and risk free
Set Up

- 1 sector (banks)
- 2 types of assets: risky and risk free
- 2 periods
Set Up

- 1 sector (banks)
- 2 types of assets: risky and risk free
- 2 periods
- 1st period is divided into 2 subperiods
Set Up continued

Bank’s balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk free, pays R^s_t</td>
<td>Endowment/Deposits</td>
</tr>
<tr>
<td>Risky, pays $R^r_{t+1} \sim N(\mu, \sigma^2_t)$</td>
<td></td>
</tr>
</tbody>
</table>

Bank’s expected next period portfolio return:

$$E_t \Pi_{t+1} = k_t^b (\hat{\mu}_t - R^s_t) + d_t R^s_t - b_t$$
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

1st subperiod:
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

1st subperiod:

- prior $\mu_t \sim N(R_{t+1}^r, \sigma_t^2)$
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

- 1st subperiod:
 - prior $\mu_t \sim N(R_{t+1}^r, \sigma_t^2)$
 - information budget, b_t, and posterior variance, $\hat{\sigma}_t^2$, is chosen with $\hat{\mu}_t = N(\mu_t, \hat{\sigma}_t^2)$
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

1st subperiod:
- prior $\mu_t \sim N \left(R_{t+1}^r, \sigma_t^2 \right)$
- information budget, b_t, and posterior variance, $\hat{\sigma}_t^2$, is chosen with $\hat{\mu}_t = N \left(\mu_t, \hat{\sigma}_t^2 \right)$

2d subperiod:
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

- 1st subperiod:
 - prior $\mu_t \sim N \left(R_{t+1}^r, \sigma_t^2 \right)$
 - information budget, b_t, and posterior variance, $\hat{\sigma}_t^2$, is chosen with $\hat{\mu}_t = N \left(\mu_t, \hat{\sigma}_t^2 \right)$

- 2d subperiod:
 - information signals are realized
Information Acquisition:
close to Van Nieuwerburgh and Veldkamp (2010)

1st subperiod:
- prior $\mu_t \sim N(R_{t+1}^r, \sigma_t^2)$
- information budget, b_t, and posterior variance, $\hat{\sigma}_t^2$, is chosen with $\hat{\mu}_t = N(\mu_t, \hat{\sigma}_t^2)$

2d subperiod:
- information signals are realized
- $\hat{\mu}_t$ is formed using Bayes rule
Information Acquisition: close to Van Nieuwerburgh and Veldkamp (2010)

- **1st subperiod:**
 - Prior $\mu_t \sim N\left(R^r_{t+1}, \sigma^2_t\right)$
 - Information budget, b_t, and posterior variance, $\hat{\sigma}^2_t$, is chosen with $\hat{\mu}_t = N\left(\mu_t, \hat{\sigma}^2_t\right)$

- **2d subperiod:**
 - Information signals are realized
 - $\hat{\mu}_t$ is formed using Bayes rule
 - And portfolio is chosen: $k^b_t = \frac{\hat{\mu}_t - R^s_t}{\rho \hat{\sigma}^2_t}$
Mean-Variance Utility

\[
\max_{b_t, k_t^b} E_t \Pi_{t+1} - \frac{1}{\rho} \text{Var} (\Pi_{t+1})
\]

\[
k_t^b = \frac{\hat{\mu}_t - R_t^s}{\rho \ast \hat{\sigma}_t^2}
\]

subject to a learning rule:
Mean-Variance Utility

\[
\max_{b_t, k_t^b} E_t \Pi_{t+1} - \frac{1}{\rho} \text{Var} (\Pi_{t+1})
\]

\[
k_t^b = \frac{\hat{\mu}_t - R_t^s}{\rho * \hat{\sigma}_t^2}
\]

subject to a learning rule:

- entropy

\[
\log_2 \left(\frac{\sigma_t^2}{\hat{\sigma}_t^2} \right) a \leq b_t
\]
Mean-Variance Utility

\[
\max_{b_t, k_t^b} E_t \Pi_{t+1} - \frac{1}{\rho} \text{Var} (\Pi_{t+1})
\]

subject to a learning rule:

- entropy

\[
\log_2 \left(\frac{\sigma_t^2}{\hat{\sigma}_t^2} \right) a \leq b_t
\]

- linear

\[
\left(\sigma_t^2 - \hat{\sigma}_t^2 \right) a \leq b_t
\]
Mean-Variance Utility
Linear Constraint

Figure: Mean-Variance Utility with Linear Learning

- - - risky asset holdings, k^b_t
--- (blue) portfolio variance

......... information budget, b_t
--- (black) steady state portfolio variance
Mean-Variance Utility

Figure: Mean-Variance Utility with Entropy Learning

- - - risky asset holdings, k_t^b

— (blue) portfolio variance

—— — (black) steady state portfolio variance

…… information budget, b_t
Set Up

- **Household(s):**
Set Up

- **Household(s):**
 - lend money to bank
Set Up

- **Household(s):**
 - lend money to bank
 - receive all the profits from all the sectors
Set Up

Household(s):
- lend money to bank
- receive all the profits from all the sectors
- consume (no labor decisions)
Set Up

- **Household(s):**
 - lend money to bank
 - receive all the profits from all the sectors
 - consume (no labor decisions)
- **Manufacturer:**
Set Up

- **Household(s):**
 - lend money to bank
 - receive all the profits from all the sectors
 - consume (no labor decisions)

- **Manufacturer:**
 - borrows from the bank: $k_{t+1} = l_t + (1 - \delta) k_t$
Set Up

- **Household(s):**
 - lend money to bank
 - receive all the profits from all the sectors
 - consume (no labor decisions)

- **Manufacturer:**
 - borrows from the bank: \(k_{t+1} = l_t + (1 - \delta) k_t \)
 - produces a good: \(y_{t+1} = z_{t+1} k_t^\alpha \)
Set Up

- **Household(s):**
 - lend money to bank
 - receive all the profits from all the sectors
 - consume (no labor decisions)

- **Manufacturer:**
 - borrows from the bank: \(k_{t+1} = l_t + (1 - \delta) k_t \)
 - produces a good: \(y_{t+1} = z_{t+1} k_t^\alpha \)
 - \(z_{t+1} \sim N(z, \sigma_t^2) \)
Figure: Response to a Change in Monetary Policy
Mean-Variance Utility
Linear Constraint

Figure: Response to a Change in Initial Variance
Mean-Variance Utility

Figure: Response to a Change in Monetary Policy
Mean-Variance Utility

Entropy

Figure: Response to a Change in Initial Variance
Conclusion

- The model replicates excessive risk-taking in low interest rate and low volatility environment
- Low interest rates stimulate risk-taking:
 - search-for-yield
 - information acquisition
- Low volatility environment:
 - may stimulate risk-taking
 - amplifies effect of low interest rates